Sebastian
Professor, University of Kentucky, USA
Title: Synthesis of Environmentally Friendly and Sustainable Multi-Functional Surfaces and Interfaces
Biography
Biography: Sebastian
Abstract
The synthesis of environmentally friendly and sustainable multi-functional surfaces and materials is leading the research of innovative applications in energy, water and environmental remediation. The most important biological and physicochemical process occur at the surface or the interface between two or more materials. Hence, if a material’s surface can be functionalized, it could perform different tasks simultaneously such as catalysis, selective separations, sorption and adhesion, and oxidation/reduction processes.
The development of new-generation materials that extend the industrial applications of reaction-separation processes is being addressed in some applications like water treatment or fuel cells. The development of functionalized surfaces in highly porous materials can led to stimuli responsiveness such as ionization, electron and ion transfer, swelling, hydrophobicity/hydrophilicity or sorption. These new combination of techniques and materials prove to be effective in selective separations in various environmental conditions, enhancing reactivity, durability and permeation.
The main idea is how to increase the number of functional groups by unit of area on the material used in order to give and augment sensibility, reactivity, selectivity or sorptive characteristics and, at the same time not affecting or even improve the application performance. Polymers and biopolymers may display these different surface functionalities and due to their versatility, they can be applied in diverse research fields and simultaneously be sustainable technologies.